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Abstract— Injection moulding is an industrial process for the
mass production of plastic components, with many parameters
affecting the quality of this process. Hotspot regions in the
component occur due to non-optimised process variables or
limitations in the cooling system and can lead to warpage or
shrinkage. Hotspots should be minimised to avoid part defects
and achieve the required dimensional tolerances for precision
components. This work outlines a machine-learning-based ap-
proach for predicting the maximum hotspot temperature in
an injection moulded component using process simulation and
in-mould sensor data. The hotspots were identified through
software simulation, and then their locations and temperatures
were confirmed through an actual experiment using in-mould
thermocouples. Two different machine learning approaches,
artificial neural network (ANN) and support vector regres-
sion (SVR), were developed using the extracted data from
the sensors and a design of experiment (DOE) method. The
performance of linear and Gaussian kernels was compared
for the SVR method. The Gaussian SVR resulted in superior
performance compared to the linear kernel. The Gaussian SVR
was then compared to the ANN prediction method, where ANN
showed a slightly better prediction performance. This study has
two primary outcomes. First, we show the simulation results
can be used to identify critical areas of the part for real-time
monitoring. Secondly, embedding sensors in these locations and
applying a machine learning approach to the data, provides
a good indication of potential quality issues such as warpage
and shrinkage post-production. The use of ANN indicates an
accurate prediction performance, facilitating rapid optimisation
of the process for the minimisation of hotspots.

I. INTRODUCTION

Injection moulding (IM) is a widely used process for the
rapid manufacturing of plastic components in high volumes.
The process contains three main stages: filling, packing, and
cooling. Uneven and non-uniform temperature distribution
on the cooling of the part can lead to residual stresses
and, thereby, part defects such as warpage and shrinkage.
Identifying and eliminating the locally heated regions or
hotspots are crucial to having a uniform temperature profile
and high part quality. Hence, predicting these hotspots and
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mapping their relationship with the key input parameters is
a proposed novel approach to improve the part quality.

Different machine learning (ML) algorithms have been
applied in the injection moulding (IM) process to predict the
part quality factors and optimal process variables. Artificial
Neural Network (ANN) is one of these well-developed
methods that has been shown to be effective for modelling
the IM process in a number of recent works. Bensingh et al.
[1] applied ANN to improve the optical quality in the injec-
tion moulding of a bi-aspheric lens by coupling ANN and
Particle Swarm Optimisation (PSO). The comparison of the
results with the ANN and Genetic Algorithm (GA) approach
illustrated the superiority of the ANN/PSO approach in faster
convergence. Cheng Ke et al. [2] applied a multilayer percep-
tron neural network on a dataset extracted from a pressure
curve produced by an in-mould pressure sensor to predict the
part dimension of a moulded component. Moayyedian et al.
[3] implemented ANN along with the Taguchi method to find
the optimum process settings for producing a high-quality
thin-walled part. In a recent study, Lee et al. compared ANN
to linear and second-order polynomial regression, in which
ANN prediction performance was relatively better than the
two other methods [4].

Another popular ML method that can capture nonlinearity
in data and provide a proficient prediction model is support
vector machine regression (SVR). Gao et al. [5] applied
SVR to predict the part dimensions in an injection moulding
process using pressure and temperature data. Yan et al. [6]
designed probabilistic constraints for SVR to predict the
product design time, and they validated their approach in
the injection moulding process. Li et al. [7] developed least
squares SVR to predict the weight of the plastic parts in
the injection moulding process and validated their approach
through an experiment with an average error of 2%. A
complete review of the application of the different ML
approaches in injection moulding is summarised in [8].

Although ML methods have been implemented in injection
moulding to predict different part quality factors or process
variables, limited research has been conducted to predict
the part temperature profile and hotspots. Several studies
have been done to minimize hotspots by modifying the
mould tools, such as sophisticated cooling channel design
[9]–[11] or runner systems [12]. These modifications require
costly modifications to machine tools. Also, temperature
differentials and hotspots will lead to post-process shrinkage
and warpage, which are often not apparent for a long time
after production. For high-precision components such as
medical devices, product release may be delayed for up to



two weeks post-production to allow for quality assurance
metrology to be conducted after the relaxation of residual
stresses in the parts. Prediction of the hotspots and temper-
ature differentials in situ could reduce the metrology quality
controls, production lead time, and scrap rates. Such a real-
time method could also be used for process optimisation
and control and to optimise design changes should they be
needed.

Moreover, most optimisation and prediction studies con-
ducted to date have used data on machine variables rather
than process parameters and, thereby, do not capture inherent
variability in the process. Hence using in-mould sensors
for extracting real-time and inline data from the process is
essential for effective control and monitoring of the process
[13].

This research presents a novel approach, incorporating in-
mould sensors and simulation, for predicting the hotspots
and mapping their relationship with eight input process
parameters. The component and the related mould tools were
simulated in Autodesk Moldflow Insight 2019 to identify
the temperature distribution and probable hotspot locations
in the component. Based on this temperature profile, three
Kistler temperature sensors were embedded into the moulds
to validate the simulation data. A DOE method was im-
plemented to generate and analyse real-time data of eight
machine parameters as inputs and the sensor readings from
a thermocouple embedded in the IM tooling as an output.
The dataset was used in two ML methods, ANN and SVR,
to predict the hotspot temperature in the part. The simulation
and prediction results are outlined in section III, followed by
the conclusion and future research associated with this study.

II. METHODOLOGY

A. Part description & Simulation

The product investigated is a medical device component
referred to as a ‘Clip’. The main dimensions are in mil-
limetres, and the isometric view is illustrated in Fig.1. An
industrial partner in this research work provided the initial
process settings for the simulation. The clip material is POM
(Polyoxymethylene). Current clip production sees component
quality issues such as shrinkage and warpage, meaning the
part currently suffers from an unacceptably high failure rate
due to not meeting the precise dimensional tolerances that
are required.

For the simulation of the Clip, a CAD model of the mould
with the cooling channels (Fig. 2 (a)) was imported into the
Moldflow simulation software. A 3D mesh, as shown in Fig.
2 (b), was used to capture the details of the geometry. The
melt and mould temperatures were set at 215 °C and 90 °C,
respectively, with the coolant in the cooling channel, assumed
to be water. The other process settings were adjusted based
on the details provided by the industrial partner. The injection
location and runner system were designed based on the
production tools. For simulation of the cooling stage and
temperature distribution throughout the part, the Cool (FEM)
method with flow solver was used in Moldflow. This solver

Fig. 1: Isometric view and main dimensions of Clip

Fig. 2: a) CAD and b) meshed moulds in Moldflow

can calculate the excessive shear heating in flow and variation
of the wall thickness.

B. Sensor selection

Sensors are required to measure the temperature distri-
bution in the physical experiment and are used to extract
accurate data for ML methods. For the direct in-mould
temperature measurement in which the sensor is in contact
with the polymer melt, Kistler high-temperature thermocou-
ples (type 6193B0) were chosen. The sensor temperature
durability is up to 450°C, the voltage range is 0 to 10V,
and they are small enough (diameter of 1mm) to fit into
the cavity in direct contact with the polymer melt with a
measurement error of less than ±0.5.

C. Experimental Setup

The sensorised mould tools were manufactured to validate
the simulation results of the temperature distribution in
the component and for the hotspot predictions of the ML
methods.



For the experimental setup, the injection moulding ma-
chine variables were adjusted using key process settings, as
identified in the simulation, to generate temperature readings
in the expected hotspot locations; these were measured by the
embedded thermocouples. A DOE methodology was applied
for data collection and analysis. A recent study revealed that
fractional factorial design is an efficient approach to model
the injection moulding process using ANN [14]. Hence this
research used a fractional factorial design with eight input
variables.

The input variables were: mould temperature, melt tem-
perature, holding time, holding pressure, shot size, switch-
over position, injection speed, and cooling time. The number
of experiments for the fractional factorial method with 1/16
fraction and eight two-level variables can be calculated as
(1). The experiment designs are listed in Table I.

2(8−4) = 16 (1)

Each experiment was repeated for ten shots, or cycles, in
the injection moulding machine, and thereby, the full dataset
collected from the injection moulding process was 160 shots.
The desired output is the maximum hotspot temperature from
the sensor with the maximum measurements among the three
thermocouples.

D. Machine Learning methods

In this research, two different machine learning regression
methods were compared to map the relationship between 8
input parameters and the maximum hotspot temperature. The
first method is a support vector machine regression (SVR),
and the second is an artificial neural network (ANN).

Support vector machine was initially developed for pattern
classification and then was extended to solve the regression
problem by definition of a margin of tolerance (ε) [15]. In
the ε-insensitive SVR (loss function), the goal is to find a
cost function in which the error on the training points is no
greater than ε .

For applying support vector regression (SVR) in nonlin-
ear problems and computing with the dot product of two
vectors, a kernel function is applied to transform data to a
high dimensional feature space for linear mapping. Different
kernel functions for the transformation to linear space include
linear, polynomial, and Gaussian functions. In this paper, the
performance of linear and Gaussian kernels was compared.
The dot product of observation j and k can be replaced with
(2) and (3) for Gaussian and linear kernels, respectively. ε

value and the kernel scale (σ ) were selected as 0.2 and 0.7
respectively.

K(x j,xk) = xT
j xk + c (2)

G(x j,xk) = exp(−
−∥x j − xk∥2

2σ2 ) (3)

For the ANN approach, a feedforward network with
two fully connected layers of size 10, Rectified Linear
Units (ReLU) activation function [16], and one final fully

Fig. 3: ANN net structure

connected layer for regression was designed. The network
structure is shown in Fig. 3.

For all the methods, 5-fold cross-validation was used to
avoid overfitting. The dataset was divided into two parts,
110 samples for training by 5-fold cross-validation and 50
samples for testing to examine the network performance.

III. RESULTS & DISCUSSION

A. Simulation & Experiment

After the simulation of the mould tools and Clip using
Moldflow software, the temperature distribution and hotspot
locations were identified as presented in Fig. 4 [11]. Two hot
spot regions are illustrated with circles in two different cross-
sections in Fig. 4, and their maximum temperature is almost
105°C. As mentioned in the previous section, two sensors
were located in the moulds to measure the high-temperature
points. Sensor A is located near the gate in the fixed half,
and sensor B is located in the moving half to measure the
hotspots in regions 1 and 2 (Fig. 4 (a, b)). Also, sensor C
was located at the average temperature location to compare
the sensor measurements.

The sensors were embedded in the cavity based on the
simulation result in Fig. 4. The location of sensors A, B,
and C in the moulds is illustrated in Fig. 5.

After embedding the sensors, moulds were manufactured
for conducting the experiments. The actual sensorised tool
with the sensors A, B, and C is illustrated in Fig. 6.

Fig. 4: Temperature distribution in Clip (a) xy cross-section (b) zx cross-
section



Fig. 5: sensor location in the moulds

Fig. 6: The manufactured tools a) fixed half, b) Moving half

Next, the injection moulding process was conducted with
the same process settings as the simulation. The measure-
ments of the three sensors are shown in Fig. 7 for fifteen
cycles to ensure process stability. The results in this figure
indicate that the temperature measurements of sensors A
and B (located in the hotspot regions 1 and 2) are higher
than sensor C (located in an average temperature region)
and confirm the simulation results in Fig. 4. The maximum
temperature measurement of sensors A and B is 102.7°C

and 105.05°C, respectively, and agree with the maximum
temperature in simulation results (Fig. 4) which is 105°C.

Fig. 7: The temperature measurement by sensors A, B, and C during 15
cycles

TABLE I: Fractional factorial design

No Holding time
(s)

mould temperature
(°C)

Holding pressure
(bar)

shot size
(mm)

Switch over position
(mm)

Injection velocity
(mm/s)

Melt temperature
(°C)

Cooling time
(s)

1 3 40 400 6 10 40 230 10

2 3 90 400 6 5 40 210 30

3 6 90 200 12 5 20 210 30

4 6 90 200 6 10 40 210 10

5 3 90 200 6 10 20 230 30

6 6 90 400 6 5 20 230 10

7 6 40 200 6 5 40 230 30

8 6 40 400 6 10 20 210 30

9 6 40 400 12 5 40 210 10

10 3 40 200 12 10 40 210 30

11 3 90 400 12 10 20 210 10

12 3 40 200 6 5 20 210 10

13 3 90 200 12 5 40 230 10

14 3 40 400 12 5 20 230 30

15 6 90 400 12 10 40 230 30

16 6 40 200 12 10 20 230 10



(a) training (b) training with cross validation (c) testing

Fig. 8: Gaussian SVR regression results

(a) training (b) training with cross validation (c) testing

Fig. 9: ANN regression results

This temperature is reduced to 96.5°C for sensor C, which
measures the estimated normal (average) temperature of the
Clip.

B. Prediction of the hotspot temperature by Machine Learn-
ing

After verifying the simulation results by experiment, the
performance of two machine learning algorithms in pre-
dicting the maximum hotspot temperature was compared.
The desired output for the prediction was the maximum
temperature of sensor B since this sensor has the maxi-
mum thermocouple measurements, as shown in Fig. 7. For
selecting a suitable kernel function in SVR, the prediction
performance of linear and Gaussian kernels was compared.
The linear SVR had a validation and test RSME (Root Mean
Square Error) of 1.62°C and 1.27°C, respectively. Compared
to the Gaussian SVR, with an RSME of almost 0.5°C for
both training and testing. The prediction results for Linear
and Gaussian SVR are summarised in Table II.

After selecting a suitable kernel for SVR, the performance
of Gaussian SVR and ANN in the hotspot prediction were
compared in Fig. 8 and Fig. 9, respectively. Fig. 8 (a) and
Fig. 9 (a) evaluate the training performance by 5-fold cross-
validation and compare the actual values and predicted values
by showing the error bars. The error bars for both methods
are small except for a few observations in the 80 to 85°C

range. The error bars in this region are larger since only ten
samples were available for training with this range of hot
spot temperatures. In other words, only one of the experiment
designs from table I resulted in a hotspot with a temperature
between 80°C to 85°C.

Fig. 8 (b and c) and Fig. 9 (b and c) show the regression
plots for the training and testing datasets, respectively. For
both methods, the predicted values are almost equal to the
actual values meaning the R-squared is near 1. In these
graphs, it is also noticeable that the predicted and actual
values in the 80-85°C range had a more significant difference
because of fewer available samples in this range.

The Root Mean Square Error (RSME) of the training by 5-
fold cross-validation and testing is also summarised in Table
II. The RSME of the Gaussian SVR is almost 0.5°C for
both training and testing, and the RSME of the ANN has a
slightly better performance in prediction by RMSE of nearly
0.4°C. Fig. 10 compares the prediction results of Linear
SVR, Gaussian SVR, and ANN in one plot for the region of
68°C to 74°C to see the differences in the performance of
each approach for the testing data in more detail.

It is also noteworthy to mention that there is not any data
available between almost 85°C to 105°C since the dataset
was prepared by using a two-level fractional factorial design,
and so the corresponding hotspot temperatures were mainly
dispersed in two regions.



TABLE II: Linear SVR, Gaussian SVR and ANN results for training and
testing

Method RMSE
training

RMSE
testing

R-squared
training

R-squared
testing

Linear SVR 1.62 1.27 0.99 0.99

Guassian SVR 0.57 0.51 1 1

ANN 0.45 0.41 1 1

IV. CONCLUSION

This research compared the performance of two machine
learning algorithms in predicting the hotspot temperature of
an injection moulded component.

The hotspot regions were identified through simulation
in Moldflow Insight, two in-mould thermocouples were
embedded into these regions on a manufactured mould. An
additional thermocouple was placed in a region of average
temperature. The simulation results were compared to physi-
cal experimental results collected from an injection moulding
machine. This validated the simulation results and showed
the thermocouples presented higher temperature readings in
the hotspot regions (see Fig. 4).

For data collection and analysis, a fractional factorial
design was used. Two machine learning approaches, arti-
ficial neural network (ANN) and support vector regression
(SVR), were then applied to predict and map the relationship
between eight input parameters and the maximum hotspot
temperature from sensor readings. Linear and Gaussian SVR
were compared to select a proper Kernel function in which
the Gaussian method had a better performance with RSME
of 0.5°C. Furthermore, by comparison of Gaussian SVR and
ANN, the ANN method was shown to be slightly more
accurate in its predictions, with an RMSE of almost 0.4°C
(see Table II).

The results indicate that ANN can achieve excellent pre-
diction accuracy, even with a simple structure; however,
SVR did not perform well with a linear kernel function.
In this study, the hyperparameters of ANN and SVR were
selected manually. For a better comparison of the methods,
the hyperparameters should be tuned through an optimisation
approach to ensure the maximum efficiency of the methods.

Using simulation results and inline data from the process
in the machine learning approach is a novel method to predict
the hotspots and find the optimum process setting for an
even temperature distribution throughout the moulded part,
thereby reducing scrap rates and increasing product quality.
Experiment results in this study validated the reliability of the
simulation tool; further research can investigate using sim-
ulation software to develop an adaptive closed-loop control
system for real-time optimisation of the machine variables.
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