Bottlenose dolphin (Tursiops truncatus) social structure in the Shannon Estuary, Ireland, is distinguished by age- and area-related associations

ISABEL BAKER1 and JOANNE O’BRIEN, Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway H91 T8NW, Ireland and Shannon Dolphin and Wildlife Foundation, Merchants Quay, Kilrush V15 E762, County Clare, Ireland; KATHERINE MCHUGH, Sarasota Dolphin Research Program, Chicago Zoological Society, % Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida 34236, U.S.A.; SIMON N. INGRAM2, School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; SIMON BERROW, Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Road, Galway H91 T8NW, Ireland and Shannon Dolphin and Wildlife Foundation, Merchants Quay, Kilrush V15 E762, County Clare, Ireland.

Abstract

Social and network analyses that incorporate information on individuals within a population enhance our knowledge of complex species. In this study, the social structure of wild bottlenose dolphins in the Shannon Estuary, Ireland, was analyzed by examining the dynamics of the whole population and then of individuals classed by sex, age, and area. One hundred and twenty-one dolphins were identified during 522 sightings between 2012 and 2015. The mean half-weight association index (HWI) of the population was 0.07 ± 0.02. The highest HWIs for individuals of known sex were for female-male pairs. Mean within-class HWI was significantly higher than mean between-class HWI for both age and area classes. Ordinations and sociograms were used to visualize social networks. Permutation tests revealed nonrandom associations for the population overall and both between and within classes. Temporal analyses showed associations persisting for >1,000 d. The whole population’s best fit model was for two levels of casual acquaintances. Movement analyses demonstrated the use of the inner estuary by only 25% of the population revealing a potential community division by area. The difference between mean HWI when socializing (0.09 ± 0.03) compared to foraging (0.06 ± 0.03) was significant. These results highlight the importance of localized research, reflecting the complexity found in bottlenose dolphin societies globally.

Key words: bottlenose dolphin, social structure, photo-identification, associations, networks, Tursiops truncatus, individual classification.

1Corresponding author (e-mail: isabel.baker@research.gmit.ie).
2Current address: Marine Vertebrate Research Group, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom.
Social structure, a concept that integrates the ethological interactions and ecological relationships between conspecifics, is a fundamental component of the biology of an animal population (Lusseau et al. 2006). For intelligent mammals with complex societies, the social structures of populations are integral to our overall knowledge of the species. Social structure can affect population growth, genetics, and animal movements, and represents an important factor in management and conservation (Whitehead 2008, 2009). Because not all individuals of a species are the same, it is important to explore population demographics and examine the interactions of different members within the social structure of a population. For example, sociality can be driven by individual classes such as sex (Connor et al. 2000) or age (Lusseau and Newman 2004, McHugh 2010), or other factors such as habitat use (Wiszniewski et al. 2009, Titcomb et al. 2015). It is therefore important to take such variables into account during the investigation of a population’s social structure.

If nonrandom patterns of association are found in a population, this can suggest the patterning of social relationships that characterizes that society as a whole (Smolker et al. 1992). Because of the many spatiotemporal changes in associations in a society, assessing its structure can be difficult, but available quantitative techniques, such as association and network analyses (Whitehead 2008), help to define social structure more precisely and explain observed association patterns (Lusseau et al. 2006). Additionally, sophisticated studies of social structure based on identifiable individuals can provide detailed measures and examples of these social systems (Whitehead 2008).

Bottlenose dolphins (Tursiops spp.) are highly intelligent marine mammals known to live in extremely dynamic complex social systems referred to as fission-fusion societies (Connor et al. 2000). This is one of the most complex social organization systems seen in the animal kingdom (Smolker et al. 1992), where large numbers of individuals associate in small groups that change size and composition frequently, at different spatial and temporal scales (Connor et al. 2000). Social relationships exhibited by individual dolphins are maintained within a constantly changing social environment where individuals are drawn from a large social network (where they may be present in a wide range of different groups), but associate consistently with just a few other individuals (Smolker et al. 1992).

Well-studied bottlenose dolphin societies in Shark Bay, Australia, and Sarasota Bay, Florida, exhibit strong long-term associations between adult individuals of the same sex (Smolker et al. 1992, Connor et al. 2000, Owen et al. 2002, Wells 2014, Connor and Krützen 2015). These associations are characterized by dramatic sex differences in association patterns comprising long-term bonds between males in alliances and looser network associations among female dolphins. In Doubtful Sound, New Zealand, sex-specific alliances were not observed amongst bottlenose dolphins, but some male-female associations were stable over the course of several years (Lusseau et al. 2003). However, in well-studied bottlenose dolphin populations in the Moray Firth, Scotland, and Sado Estuary, Portugal, no strong sex-specific associations have been found (Wilson 1995, Augusto et al. 2011). In the Sado Estuary, associations are similar between all individuals, with no patterning according to sex or age class (Augusto et al. 2011). Thus, it would appear that the sex class of individuals plays a varying role in bottlenose dolphin societies globally.

For long-lived, slow-developing species like bottlenose dolphins, there is a prolonged juvenile period. Typically, most studies tend to focus only on adults because they are more easily identifiable; however, an understanding of juvenile association patterns and social structure is necessary to achieve a full understanding of the social
dynamics of a population (McHugh 2010). In some studies that explored age effects, differences in patterns of association have been discovered in relation to age class (Samuels 1996). Exclusively juvenile groups are found in some populations (Wells 2014) and age-related homophily has been found in dolphin social networks (Lusseau and Newman 2004). In other studies where bottlenose dolphin groups do not seem to be segregated by sex or age class, some of these demographically mixed groups have formed socially distinct communities within populations (Lusseau et al. 2006).

The study of association patterns with respect to area use is important because differences in area use do not necessarily lead to differences in association patterns and vice versa. However, if the social structure of a population is related to area use, this has important implications for population management (Lusseau et al. 2006, Cantor et al. 2012). To answer these questions, sightings of individual dolphins may be classified by area within the study site. Then, association analyses can be used with classifiers to interrogate the data set for potential preferences or avoidances between the classes.

The bottlenose dolphin (Tursiops truncatus) population in the Shannon Estuary, Ireland, is stable and composed of approximately 120 individuals (Berrow et al. 2012) and is genetically discrete (Mirimin et al. 2011). Dolphins are present in the estuary year-round (Berrow et al. 1996, Ingram 2000, Berrow 2009) and have been observed exclusively in the Shannon Estuary and adjacent (<25 km) Tralee and Brandon Bays (Ryan and Berrow 2013, Levesque et al. 2016). This species also occurs around the entire Irish coast (O’Brien et al. 2009) and in offshore waters (Louis et al. 2014) but these are thought to constitute distinct populations (Mirimin et al. 2011). The Shannon Estuary is a Special Area of Conservation (SAC) for bottlenose dolphins (NPWS 2012), which are listed on Annex II of the EU Habitats Directive. Given the level of protection assigned to this population, information on the social structure of dolphins in the estuary is important for their long-term conservation and the development of a local management plan.

Only two studies to date have investigated the social structure of bottlenose dolphins in the Shannon Estuary (Ingram 2000, Foley et al. 2010); however, neither had access to data on individual sex or age, and although Ingram (2000) identified some spatial patterns, these were not based on classifying individuals by area of sighting locations. Our study marks a significant advance on previous work by operating with a much larger set of data and by considering within-population structure based on sex, age, and area.

In describing and analyzing the social structure of a unique population of bottlenose dolphins in Ireland, this paper makes data available for comparisons with similar studies. Studying bottlenose dolphins in varying social systems contributes to current knowledge of social structure and the evolutionary mechanisms that may have affected differences among populations. Knowledge of the social structure of a bottlenose dolphin population contributes to the conservation of the species, especially to population management within SACs and Marine Protected Areas, and helps to understand trends in long-term monitoring.

This paper aims to describe and analyze the social structure of wild bottlenose dolphins in the Shannon Estuary, Ireland using a 4 yr data set. We begin by (1) examining the social attributes of the population as a whole, and then explore the social dynamics of the population further by classifying individual dolphins by (2) sex, (3) age, and (4) area. We hypothesized that the structure of the population would be similar to that of many other populations described worldwide in several ways, specifically that there would be (1) preferred and avoided associations between individuals,
(2) a pattern of single-sex groups and strong within-sex-class associations, (3) a pattern of single-age-class groups and strong within-age-class associations, and (4) area-based social clustering of the population within the study area as a whole.

**METHODS**

**Study Site**

The study site is located in the Lower River Shannon Special Area of Conservation (SAC; Site Code 002165), a 684 km$^2$ Natura 2000 designated site (NPWS 2012) on Ireland’s west coast between County Clare, County Kerry, and County Limerick (52°36′N, 9°38′W), in which bottlenose dolphins are a qualifying interest. Surveys occurred west of Aughinish and east of Loop Head and Kerry Head (Fig. 1).

**Data Collection**

Long-term photo-identification studies of bottlenose dolphins in the Shannon Estuary have been ongoing since the early 1990s (Berrow et al. 1996, 2012; Ingram 2000; O’Brien et al. 2014). Additionally, over this time period, a dolphin-watching tourism industry has been established in which two main companies operate dolphin-watching tour boats and provide opportunistic platforms for research (Berrow and Holmes 1999).

*Figure 1. Map of the Shannon Estuary study site in Ireland. The line between Loop Head and Kerry Head represents the western boundary of the Special Area of Conservation (SAC; shaded dark gray area) while the line at Aughinish represents the boundary of the area within the SAC surveyed during this study. The study site is divided between the inner estuary and outer estuary areas by a north-south line drawn through Scattery Island, near Kilrush.*
In this study, surveys were conducted between March and November each year from 2012 to 2015 on board three vessels—the two dolphin-watching tour boats and a dedicated research vessel. The dolphin-watching boats operated independently from the ports of Carrigaholt and Kilrush, Co. Clare, with the research vessel also based in Kilrush (Fig. 1). The Carrigaholt tour boat concentrated effort in the outer estuary exclusively while the Kilrush tour boat primarily concentrated effort in the inner estuary area with some outer estuary trips. Overall, the mean length of dolphin-watching trips was 2.3 h (Barker and Berrow 2016). The research vessel was a 6 m RIB (rigid-hulled inflatable boat) with a 115 hp outboard motor, with which surveys were conducted throughout all areas of the estuary between Loop Head and Aughinish. Trained onboard observers \( n = 19 \) over 4 yr located dolphins visually by eye and with the use of binoculars (Minox 7 × 50 or 8 × 42). Observers on the Carrigaholt tour boat were positioned on the top deck at a height of ~5 m, while observations from the Kilrush tour boat and the research vessel were made from the bow of the boats at <2 m above sea level. The tour boats had a minimum of one observer and a maximum of six observers per survey while the research vessel had between three and five crew per survey.

A sighting began when at least one dolphin was within 100 m of the vessel and ended after ≤30 min due to national regulations (Maritime Safety Directorate 2005). During a sighting, all vessels maintained a position parallel to the animals and approximately 100 m from them unless the dolphins approached the boat themselves.

Sampling methods were based on Mann’s (1999) survey protocol, with sightings including records of individual dolphin IDs, group estimates, environmental measures (including water temperature, depth, and sea state), location (latitude and longitude; Garmin GPS 72H), activity states (travel, social, forage, rest, other, or unknown) and behavioral events (e.g., leap) (see definitions in Baker et al. 2017). A group was defined as all animals sighted together moving in the same general direction, engaged in similar activities, or interacting with each other within a radius of approximately 100 m (McHugh et al. 2011).

Photographs were taken throughout sightings using digital SLR cameras (Nikon D300 or Canon EOS 20D with 70–300 mm lenses) in an attempt to photograph each individual in each group for individual recognition through the photo-identification of dorsal fins (Würsig and Würsig 1977, Würsig and Jefferson 1990).

**Data Management**

Photos from all surveys and sightings were maintained in a database using the photographic software environment IMatch 5.6 (https://photools.com/). A digital photo-id catalog housed the best images of each individual in the population and was used by researchers to compare with the dorsal fin photos taken during sightings. When a tentative match was made, based on the nicks and notches along the edge of the dorsal fin, researchers were required to match at least one additional secondary characteristic such as fin shape, scars, rake marks, deformities, and persistent skin lesions, by using the filter function in IMatch to search for additional images of the individual in question, before entering their match. Following the visual comparison and matching by the first researcher, each image was then checked by two other researchers independently of one another, wherein the match was verified, or rejected and then rematched. The final identifications of each individual dolphin in each sighting were verified by the lead researcher, who had the most photo-id experience, as
recommended by Pearson et al. (2016). The long-term monitoring of this relatively small population, coupled with the high encounter rate, knowledge of life history, and well-maintained photo-id catalog of 204 known individuals (recorded between 2008 and 2016) greatly enhanced the process and efficiency of individual dolphin identification.

Both written sighting records and individual dorsal fin photographs (one best photograph per individual per sighting) were entered into a specially adapted version of FinBase (Microsoft Access), a relational sightings database for bottlenose dolphin research (Adams et al. 2006). Each dorsal fin photo’s quality was graded using the FinBase Photographic Quality form and assigned to its specific sighting and survey using the FinBase Match/Catalog form, wherein the dolphin class, degree of obstruction and distinctiveness were also graded to defined scales within the program. Activity state data originated from the FinBase database, where each sighting was assigned a single predominant activity state (travel, social, forage, rest, other, or unknown) by the observer during data collection.

**Data Classification**

**Sex classification**—Information on the sex of individual dolphins was obtained in three ways, using (1) genetic sex determination from biopsy tissue samples \(n = 27\), collected under NPWS permits (Berrow et al. 2002, Mirimin et al. 2011); (2) photographs of the genital area \(n = 1\); and (3) consistent observations with a dependent calf multiple times over multiple years \(n = 30\); Smith et al. 2016). As a result, 47\% of known sexes were determined through biopsy sampling and 53\% from observational data. For females identified through association with a calf, the number of mother-calf pair sightings ranged from 6 to 92. Overall, 48\% of individuals available for analysis were of known sex.

**Age classification**—Age class was determined by observations of individual size, reproductive state and/or knowledge of long-term life history (unpublished data). Adults were larger and darker in color than juveniles, and sometimes with a dependent calf. Juveniles were less than two-thirds the size of adults and were not observed to be dependent calves. In some cases, individual juveniles were of known age due to knowledge of their association with their mother as a calf in the previous years before weaning.

**Area classification**—The study site was divided between the inner estuary and outer estuary areas by a north-south line drawn through Scattery Island, near Kilrush. This line divided the estuary roughly in half, was a reference point for the center of the study area and divided research surveys east and west of the port of Kilrush. A classifier for area was created based on the sighting records of individuals by location, because preliminary evidence suggested differences in the use of the inner and outer survey areas by individuals in the population. If an individual had ever been observed in the inner estuary, it was classified as “inner.” If an individual had never been observed in the inner estuary, it was classified as “outer” (Table S1). This provided a basic classification from which individual area use within the study site could be explored (see map in Fig. 1; Fig. S1).

**Data Analysis**

**Analytical definitions**—Data were queried in FinBase and input into SOCPROG 2.7 (compiled version), a dedicated software package that uses data on the associations
of identified individual animals for the analysis of their social structure (Whitehead 2009), in group mode, with a supplemental file detailing individual sex, age, and area classifiers. The sampling period was defined as one day, based on the natural break between daylight sampling sessions and because the proportion of individuals sampled within a 1 d time frame was appropriate for data analysis. Associations between individuals were defined by shared group membership, with each record/sighting constituting one group. The half-weight association index (HWI) was used as the coefficient of association. This measure represents the strength of social bonds among individuals (with a range of possible values between 0 [never seen together] and 1 [always seen together]), while also accounting for the possibility of missing individuals during sighting encounters (which is a possibility when opportunistic research platforms like dolphin-watching tour boats are used). The HWI is defined as $\text{HWI} = \frac{2NT}{N_a + N_b}$ where $NT$ represents the number of times two individuals are seen in the same sighting and $N_a$ and $N_b$ represent the total number of times each individual is sighted, respectively (Cairns and Schwager 1987). Thus, this association index indicates the proportion of time that each pair of individuals is seen in a group together.

For all analyses other than the temporal analyses and movement analyses (where all data were used), restrictions were set within SOCPROG to include only individuals with >5 sighting records. Dependent calves were excluded from analyses because their presence was a result of their mothers’ presence in groups. Excluding dependent calves from the data set left adults and juveniles, but for analyses using sex class, only adults were available as sex had not been determined for any of the juveniles. Both adults and juveniles were included in the analyses using area class.

SOCPROG was used to generate basic population data, quantify the number of individuals in defined classes, produce descriptive statistics and examine association patterns between individuals in the population. A discovery curve was plotted to assess photographic coverage of identified population members using cumulative number of identifications and year of sampling.

**Group composition, associations and clusters**—Group composition was explored by examining the identities of individuals in every group, classifying them by sex and age and calculating overall proportions. Associations between and within sex classes were quantified and compared using a Mantel test and a histogram of proportional HWIs (Whitehead 2009).

Average linkage hierarchical cluster analysis was used to investigate relationships within the inner area class wherein individuals were assigned to clusters (clusters may be semipermanent social units, communities, or other social entities). A cophenetic correlation coefficient (CCC) value >0.8 (where 1.0 = perfect fit and 0.0 = no relationship) and a modularity >0.30 indicate that a dendrogram is an acceptable representation of input distances and its division into clusters is appropriate (Whitehead 2009).

**Social networks**—Association matrices were visualized as social networks (or sociograms) for all associations with HWI ≥ 0.20 with individual nodes shaded, first by age and then by area class, and weighted links representing strength of association between individuals at three levels. A further sociogram was constructed using cluster analysis results to visualize the clustering of individuals in the inner estuary network.

Weighted social network measures were calculated for all individuals and for age, area, and sex classes separately using the network analysis statistics module in SOCPROG and standard errors were calculated using the bootstrap method with 1,000 replicates. “Strength” was calculated as the sum of association indices of any individual with all other individuals; thus, high strength values indicate strong associations...
with other individuals in the population. “Reach” was measured as the overall strength of network neighbors.

**Behaviorally specific associations and preferences**—We used methods similar to Gero et al. (2005) to determine whether behaviorally specific preferred associations existed within the population, as it is important to assess the effect of activity state on associations in fission-fusion networks (Gazda et al. 2015, Moreno and Acevedo-Gutiérrez 2016). Restrictions were implemented in SOCPROG for each of four main activity states: rest, travel, social, and forage. The data were restricted by each activity state in turn and the HWI matrix was saved as a SOCPROG association measure. Then, SOCPROG’s analyses of multiple association measures module was used to view dyadic plots and different dyadic outputs of the association measures. A Mantel test was run to test for correlation between social and foraging HWIs.

**Association preferences/avoidances**—Permutation tests (Bejder et al. 1998, Whitehead et al. 2005) were used to test for preferred/avoided associations across the whole population, the null hypothesis being that there were no bottlenose dolphin dyads in the Shannon Estuary population that preferred or avoided to associate. Then, permutations were run to test for preferred/avoided associations within and between classes (age, area, and sex) as well as for each year of data separately (and sex-specific associations within each year) and for activity states (social, forage, rest, and travel). The null hypothesis in each case was that individuals would associate randomly with one another. The real HWI matrix was permuted 40,000 times with 100 trials per permutation for each analysis. Associations were permuted within sampling periods (i.e., days). The test calculates a statistic for the real data and for many permutations of random data (with constraints). The null hypothesis that only random associations exist is rejected if the statistic for real data is greater than the statistic for 95% of the random data ($P < 0.05$) (Bejder et al. 1998).

**Stability of associations over time**—Temporal analyses were used to determine the stability and persistence of associations over time. The lagged association rates were standardized as we could not be certain that all individuals had been identified in every sighting. These standardized lagged association rates (SLARs) were plotted against time lag with moving averages and standard errors calculated using the temporal jackknife method. The null association rate was added to the plots; this represents the theoretical SLAR if individuals associated randomly (Whitehead 2008). Four exponential models were fitted and the model with the lowest Quasi Akaike Information Criterion (QAIC) was determined the best fit, with the $\Delta$QAIC (difference between QAIC and that of the best model) indicating the degree of support for the other models ($>10$ difference $=$ no support; Whitehead 2008). To determine if sex-specific patterns of association persisted over time, SLARs were plotted for female-male associations using the same methods.

**Movements throughout study area**—To investigate movements between the two defined areas of the study site, sighting records were filtered and categorized as either Area 1 (inner estuary) or Area 2 (outer estuary). We used movement analyses in SOCPROG to examine how individuals moved among the inner and outer estuary areas of the study site. The lagged identification rate (LIR), the probability that if an individual is identified in the area at any time it is identified during any single identification made in the area some time lag later (Whitehead 2001), was used to assess movements among the two areas. LIRs were calculated for each single area and then between the two areas. We then used overall LIRs to assess movements within and between areas which indicated the general probabilities that individuals would be in the same study area or in a different one after particular time lags (Whitehead 2009).
The number of bootstrap replications was set to 1,000 to calculate bootstrap-estimated standard errors of the LIRs. Again, selection of the best fitting models was determined using the lowest quasi Akaike information criterion (QAIC) value. The QAIC was used (rather than the AIC) to compensate for overdispersed data (Whitehead 2007).

Results

Survey Effort and Photo-identification

Of the 353 surveys (607 sightings) carried out between 2012 and 2015, 312 (522 sightings) contained photos of individually identifiable adult and/or juvenile bottlenose dolphins (Table 1). A total of 136,486 photographs were taken and 45,371 of these were used for photographic analysis of dolphin sightings. A total of 2,948 identifications were made of 121 distinct individual dolphins. On average, 106 individuals (88%) of the 121 identified were sighted each year. Ninety-eight percent of individuals (119) were sighted in multiple years, with 64% of individuals (77) seen in all four study years from 2012 to 2015.

On average, surveys (from all boats collectively) yielded 2.7 sightings of bottlenose dolphins per day, with a mean of 12.2 individual dolphins identified per day ($n = 121$, range $= 1$–60), thus about 10% of the adult/juvenile population in this study was identified each day. The mean number of sightings per individual was $24.4 \pm 21.7$ ($n = 121$, range $= 1$–101).

A discovery curve plotting number of individuals identified against cumulative number of identifications reached a clear plateau suggesting good coverage of the population after about 1,000 identifications and that almost all the individuals recorded in 2014 and 2015 were resighted from records in 2012 and/or 2013 (Fig. 2). In fact, no new (adult/juvenile) individuals were recorded during the 2015 field season.

Of the 121 individuals sighted, 58 were of known sex (46 female, 12 male) and 63 were of unknown sex. Age class was divided into 93 adults and 28 juveniles. The area classifier consisted of 33 “inner” and 88 “outer” estuary individuals. Within this, the

Table 1. Summary of survey effort by sampling variable, for sightings containing photos of individually identifiable bottlenose dolphins, in the Shannon Estuary, Ireland. Named vessels are *Muc Mhara* (the research RIB), *Draíocht* (the Carrigaholt tour boat), and *DD* (Dolphin Discovery, the Kilrush tour boat).

<table>
<thead>
<tr>
<th>Survey effort</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. days</td>
<td>29</td>
<td>50</td>
<td>65</td>
<td>53</td>
<td>197</td>
</tr>
<tr>
<td>No. surveys</td>
<td>57</td>
<td>78</td>
<td>100</td>
<td>77</td>
<td>312</td>
</tr>
<tr>
<td>No. sightings</td>
<td>95</td>
<td>119</td>
<td>180</td>
<td>128</td>
<td>522</td>
</tr>
<tr>
<td>No. sightings by vessel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Muc Mhara</em></td>
<td>1</td>
<td>7</td>
<td>59</td>
<td>15</td>
<td>82</td>
</tr>
<tr>
<td><em>Draíocht</em></td>
<td>66</td>
<td>78</td>
<td>52</td>
<td>70</td>
<td>266</td>
</tr>
<tr>
<td><em>DD</em></td>
<td>28</td>
<td>30</td>
<td>65</td>
<td>39</td>
<td>162</td>
</tr>
<tr>
<td>No. sightings by survey area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer estuary</td>
<td>76</td>
<td>96</td>
<td>89</td>
<td>95</td>
<td>356</td>
</tr>
<tr>
<td>Inner estuary</td>
<td>13</td>
<td>17</td>
<td>66</td>
<td>29</td>
<td>125</td>
</tr>
<tr>
<td>Whole estuary</td>
<td>6</td>
<td>6</td>
<td>25</td>
<td>4</td>
<td>41</td>
</tr>
</tbody>
</table>
inner class consisted of 27 adults and 6 juveniles; the outer class of 66 adults and 22 juveniles.

**Group Composition, Associations and Clusters**

Of 268 group sightings in which at least one individual was identified as male, 241 (90%) had females present. While, of 450 group sightings in which at least one individual was identified as female, 241 (54%) had known males present. Of the 522 sightings analyzed, 225 groups contained juveniles; only 7% (16) of these groups contained no other age class. The overall proportion of single sex groups vs. mixed sex groups could not be determined because 80% of the sightings analyzed contained at least one individual of unknown sex. When restrictions were set within SOC-PROG to include only individuals with >5 sighting records, 106 distinct individual dolphins and 519 sightings were available for association and network analyses.

The overall mean HWI of the Shannon Estuary population was 0.07 ± 0.02. The maximum HWI that any individual had with any other individual ranged from 0.16 to 0.72 (mean = 0.41, SD = 0.11, n = 106).

When sex was selected as the class variable, and analyses included only individuals of known sex, the HWIs over 0.4 were for female-female and female-male pairs only, with female-male association indices higher than all others (>0.6; Fig. 3). The mean HWI for male-male associations was the highest (mean = 0.1191, SD = 0.0313), and mean female-female (mean = 0.0872, SD = 0.0259) and female-male (mean = 0.0913, SD = 0.0427) association indices were almost equal. However, this may have
been due to the much larger sample size for females ($n = 45$) compared to males ($n = 10$). Overall, associations between different sex classes were roughly the same (mean $= 0.0913$, SD $= 0.0402$) as those within same sex classes (mean $= 0.0930$, SD $= 0.0294$) and the difference between them was not statistically significant (two-sided Mantel test, $t = -0.30$, $r = -0.01$, $P = 0.81$).

In age classes, juvenile-juvenile associations were the strongest (mean $= 0.13$, SD $= 0.04$), followed by adult-adult associations (mean $= 0.09$, SD $= 0.02$). Adult-juvenile associations were the weakest (mean $= 0.05$, SD $= 0.02$). The strongest association recorded in the population was between two juveniles (HWI $= 0.72$). Generally, associations within same age classes (mean $= 0.10$, SD $= 0.03$) were stronger than those between different age classes (mean $= 0.05$, SD $= 0.02$) and this difference was statistically significant (two-sided Mantel test, $t = 10.72$, $r = 0.22$, $P = 0.00$).

Similarly, associations within same area classes (mean $= 0.11$, SD $= 0.05$) were much stronger than those between different area classes (mean $= 0.04$, SD $= 0.03$) and this difference was also statistically significant (two-sided Mantel test, $t = 16.75$, $r = 0.30$, $P = 0.00$). Inner-outer class associations were the weakest (mean $= 0.04$, SD $= 0.02$), outer-outer associations were relatively stronger (mean $= 0.08$, SD $= 0.02$), but inner-inner associations were by far the strongest (mean $= 0.17$, SD $= 0.06$).

Average-linkage cluster analysis of the matrix of HWIs of individuals classified as inner in the bottlenose dolphin population resulted in three clusters, with a maximum modularity (Type 1; controlling for gregariousness) of 0.13 at a HWI of 0.10. IDs 244 and 150 were the most associated individuals with a HWI of 0.72 (Fig. 4). Although the modularity was low (indicating that the division into clusters may not

![Figure 3](image-url)
be appropriate), the cophenetic correlation coefficient (CCC) value of 0.88 indicates that the dendrogram is an acceptable representation of input distances. Thus, inner estuary individuals appear to be clustered into two major groups consisting of 21 individuals and 11 individuals, and a third “cluster” with a single individual (ID 34). A similar cluster analysis of outer class individuals resulted in ten clusters but the CCC value of 0.67 was not high enough to accept the dendrogram as a true representation of individual clustering.

**Social Networks**

A sociogram was constructed for all individuals analyzed ($n = 106$) with age classifiers (adult, juvenile), illustrating the social connections between individuals with HWI $\geq 0.25$ and the strength of association at three levels (HWIs of 0.25, 0.50 and 0.75). The population appears to be somewhat aggregated according to associations by age class, with a major mass of adults associating with adults and two smaller collections of juveniles associating closely with other juveniles (Fig. 5).

Next, a sociogram was constructed for all individuals analyzed ($n = 106$) with area classifiers for outer ($n = 73$) and inner ($n = 33$), with the inner class further divided (using the results of the previous cluster analysis) into three clusters (Fig. 6A). This diagram illustrates the social connections between individuals with HWI $\geq 0.25$ and the strength of association at three levels (HWIs of 0.25, 0.50, and 0.75). Overall, the population appears to be roughly assembled by association into two groups or communities with a third group of key individuals forming connections between the two major groups, although their associations are weaker than those among the major group members themselves.

The strong associations between individuals within the inner class ($n = 33$) are apparent in a sociogram of only inner individuals (Fig. 6B) where the clustering of

---

**Figure 4.** Average-linkage cluster analysis (CCC = 0.88) of the matrix of HWIs of individual bottlenose dolphins classified as inner ($n = 33$).
individuals from the cluster analysis is clearly depicted. The major inner cluster of 21 individuals and the other 12 individuals who sit between this major cluster and the outer estuary individuals are apparent.

With further exploration of age class division in the social network, not only do juveniles and adults have closer associations within classes than between, but if each age class is further classed by area, there are clear dissimilarities in association between inner and outer adults and inner and outer juveniles. Thus, individuals of each age group are divided from each other and are further divided within their age groups by their area class.

Social network metrics were calculated for the population overall and for each identified class (age, area and sex) separately (Table 2). For both direct (strength) and indirect (reach) connectedness, the average measures for adults were significantly higher than for juveniles ($P < 0.05$; determined because the

*Figure 5. Sociogram of all individual bottlenose dolphins ($n = 106$) with node color for age (adult = white, juvenile = gray), illustrating the social connections between individuals with HWI $\geq 0.25$. The thickness of lines represents the strength of association at three levels. Numbers within each node represent individual dolphin ID codes.*
The difference in mean values between classes was greater than twice the sum of the bootstrapped standard errors. Similarly, the average measures of strength and reach for females (and unknown sex individuals) were significantly higher than for males ($P < 0.05$), although the small sample size for males may have affected the measures for that class.

**Behaviorally Specific Associations and Preferences**

Restrictions on sightings based on predominant activity state produced four separate association matrices. The mean HWI for socializing groups was higher ($0.09 \pm 0.03$) than for foraging groups ($0.06 \pm 0.03$). HWIs for pairs of individuals in sightings where the activity state was foraging were significantly different to those in sightings where the activity state was socializing ($n = 77$, two-sided Mantel $Z$-test, matrix correlation of association matrices = 0.28, $P < 0.05$). Permutation tests were carried out for sightings of the four main activity states (travel, forage, social, rest). The CVs of the real HWIs were significantly larger than those of the random data for travel ($P < 0.0001$), social ($P < 0.0001$) and foraging ($P < 0.05$) behavioral associations (Table 3). No significance was found for associations calculated for the activity state rest, although this may have been due to the small sample size in this case (only 13 sightings compared to more for other activity states, unpublished data). The significance found for the first three activity states indicated that behaviorally specific preferred associations exist in this population.

**Table 2.** Social network measures calculated for the Shannon Estuary bottlenose dolphin population overall and by age, area, and sex classes separately. Values are presented as mean ± SD (bootstrapped standard error).

<table>
<thead>
<tr>
<th></th>
<th>$n$</th>
<th>Strength</th>
<th>Reach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>106</td>
<td>7.77 ± 1.91 (0.52)</td>
<td>64.04 ± 17.30 (8.46)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juveniles</td>
<td>25</td>
<td>3.21 ± 0.93 (0.37)</td>
<td>11.12 ± 4.06 (2.64)</td>
</tr>
<tr>
<td>Adults</td>
<td>81</td>
<td>6.83 ± 1.84 (0.43)</td>
<td>49.94 ± 14.09 (6.39)</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner</td>
<td>33</td>
<td>5.28 ± 1.91 (0.31)</td>
<td>31.45 ± 12.97 (3.71)</td>
</tr>
<tr>
<td>Outer</td>
<td>73</td>
<td>6.08 ± 1.63 (0.55)</td>
<td>39.60 ± 11.36 (7.40)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>45</td>
<td>3.84 ± 1.14 (0.30)</td>
<td>15.99 ± 4.95 (2.46)</td>
</tr>
<tr>
<td>Male</td>
<td>10</td>
<td>1.07 ± 0.28 (0.11)</td>
<td>1.22 ± 0.27 (0.26)</td>
</tr>
<tr>
<td>Unknown</td>
<td>51</td>
<td>3.65 ± 0.91 (0.30)</td>
<td>14.14 ± 4.12 (2.48)</td>
</tr>
</tbody>
</table>
Table 3. Real and random coefficients of variation (CV) of half-weight association indices (HWIs) across age, area and sex class, year (and within year female-male HWIs) and activity state, and pooled for all sightings.

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>CV of real HWI mean</th>
<th>CV of random HWI mean</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>81</td>
<td>1.08</td>
<td>0.97</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Juvenile</td>
<td>25</td>
<td>1.04</td>
<td>1.01</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Adult-juvenile</td>
<td>1.53</td>
<td>1.49</td>
<td></td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Area class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner</td>
<td>33</td>
<td>0.74</td>
<td>0.68</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Outer</td>
<td>73</td>
<td>1.14</td>
<td>1.07</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Inner-outer</td>
<td>1.31</td>
<td>1.27</td>
<td></td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Sex class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>45</td>
<td>1.06</td>
<td>0.95</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Male</td>
<td>10</td>
<td>0.84</td>
<td>0.80</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>Female-male</td>
<td>1.03</td>
<td>0.98</td>
<td></td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>88</td>
<td>1.88</td>
<td>1.80</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Female-male</td>
<td>37-9</td>
<td>1.55</td>
<td>1.51</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>2013</td>
<td>103</td>
<td>1.71</td>
<td>1.65</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Female-male</td>
<td>43-10</td>
<td>1.32</td>
<td>1.31</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>2014</td>
<td>101</td>
<td>1.75</td>
<td>1.63</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Female-male</td>
<td>44-10</td>
<td>1.33</td>
<td>1.27</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>2015</td>
<td>95</td>
<td>2.10</td>
<td>2.02</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Female-male</td>
<td>40-8</td>
<td>1.68</td>
<td>1.67</td>
<td>0.31</td>
</tr>
<tr>
<td>Activity state</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social</td>
<td>88</td>
<td>2.22</td>
<td>2.21</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Foraging</td>
<td>93</td>
<td>2.21</td>
<td>2.19</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>Rest</td>
<td>47</td>
<td>1.88</td>
<td>0.00005</td>
<td>1.00</td>
</tr>
<tr>
<td>Travel</td>
<td>95</td>
<td>2.03</td>
<td>1.95</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Overall</td>
<td>106</td>
<td>1.24</td>
<td>1.11</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>

Association Preferences/Avoidances

The overall significance for preferred/avoided associations in the population, using the coefficient of variation (CV) of association indices as a test statistic, was $P < 0.0001$ (CV = 1.24 for real data, compared with CV = 1.11 for mean of randomly permuted data). Thus, the null hypothesis that only random associations exist could be rejected.

When the HWIs within and between classes (age, sex and area) and years were investigated, the CVs of the real HWIs were significantly larger than those of the random data ($P < 0.0001$, Table 3) in most cases, although the strength of significance varied for juvenile-juvenile ($P < 0.01$) and male-male ($P < 0.05$) associations. The persistence of significant results for most variables provides further evidence for rejecting the null hypothesis that there are no bottlenose dolphin dyads in the Shannon Estuary population that prefer or avoid association.
Stability of Associations over Time

Standardized lagged association rates (SLARs) and null association rates were plotted against time lag (with moving averages and standard errors estimated using the temporal jackknife method) for all 121 bottlenose dolphins (Fig. 7A) and four exponential models for SLARs were fitted. The SLARs remain consistently higher than the null association rate; after 1,000 d, the stabilization is still well above the standardized null association rate. The fourth model—“two levels of casual

Figure 7. Standardized lagged association rates (SLARs) and null association rate plotted against time lag with best fit exponential model for (A) whole population (n = 121) and (B) female-male (n = 55) associations. Standard error bars (vertical lines) estimated using temporal jackknife method. SLAR curves were smoothed with moving averages of (A) 160,000 and (B) 2,000 associations.

Stability of Associations over Time

Standardized lagged association rates (SLARs) and null association rates were plotted against time lag (with moving averages and standard errors estimated using the temporal jackknife method) for all 121 bottlenose dolphins (Fig. 7A) and four exponential models for SLARs were fitted. The SLARs remain consistently higher than the null association rate; after 1,000 d, the stabilization is still well above the standardized null association rate. The fourth model—“two levels of casual
acquaintances”—had the lowest QAIC and so fit best (Fig. 7A). There was no support for the other three models ($\Delta$QAIC > 15).

Interestingly, when female-male association rates were plotted, the best fit model was for “preferred companions and casual acquaintances” (Fig. 7B). This indicates that sex-specific patterns of association may persist over time between females and males at two levels of association—one of “preferred companions” and one of “casual acquaintances.”

Movements Throughout Study Area

Lagged identification rates (LIRs) plotted against time lag, among the two areas of the study site, suggest that the probability of an individual being identified in either the inner or outer estuary and then being identified in either area some time later remains almost the same over time (LIRs for inner estuary to inner estuary were higher than all others, at ~0.045). The best fitting models for the probabilities of movements from one area to the other (either Area 1 to 2, or Area 2 to 1) were different for the two cases; for LIRs of individuals moving from the inner to the outer estuary, the first two models indicating a “fully mixed” population fit best, whereas for LIRs of individuals moving from the outer to the inner estuary, the last two models indicating a “migration/interchange” population fit best. The goodness of fit chi-squared value was significant ($P = 0.00$) for all models.

Overall LIRs plotted to assess movements within and between areas suggest that after 200 d, the probability that an individual is in the same study area is higher than the probability that an individual is in a different study area, but after 360 d (and up to 1,100 d) the probabilities are virtually the same for either scenario (Fig. 8).

![Figure 8. Plot of lagged identification rates against time lag (day) for individual movements within (circles) and between (asterisks) areas of the study site (bootstrap-estimated standard errors (bars) from 1,000 bootstrap replications) of individual bottlenose dolphins sighted in the Shannon Estuary.](image)
Research on bottlenose dolphin social structure began in the 1980s (e.g., Wells et al. 1987, 1991; Smolker et al. 1992) and continues today (e.g., Wells 2014, Connor and Krützen 2015, Louis et al. 2015). The structure of many resident populations has been described including in Sarasota Bay, Florida (Wells 2014), Shark Bay, Australia (Connor et al. 2001), the St. Johns River, Florida (Ermak 2014), the Aeolian Archipelago, Italy (Blasi and Boitani 2014), Laguna, Brazil (Daura-Jorge et al. 2012), Port Stephens, Australia (Wiszniewski et al. 2010), and the Sado Estuary, Portugal (Augusto et al. 2011). Recently, studies have illuminated the importance of social structure in relation to cetacean culture (Krutzen et al. 2005, Mann et al. 2012, Cantor and Whitehead 2013) and activity patterns (Gazda et al. 2015).

Studies of bottlenose dolphins have shown that the species generally lives in a fission-fusion social system (Connor et al. 2000) in which societies encompass both extremely fluid and stable associations between individuals (Smolker et al. 1992). Individuals within a population associate in temporary groups of variable size and composition, but there can be long-term associations among identified individuals within these fluid groups (Wells et al. 1991, Lusseau et al. 2003).

This study shows that bottlenose dolphins in the Shannon Estuary fit the general pattern of a fission-fusion society structured by age and area class, but perhaps also characterized by unusual female-male associations. Although individuals in the population associate with many others in a complex social network, significantly strong, persistent and preferred associations exist between individual dolphins. In Sarasota Bay, Florida, dolphin group composition is generally based on within-age and -sex class associations, including groups of females and calves, exclusively juvenile groups, and adult males, typically as strongly bonded pairs (Wells 2014). Our initial hypothesis was that the Shannon Estuary population would contain similar groups; however, this does not appear to be the case. In contrast, groups of dolphins in the Shannon Estuary appear to be composed of mixed sex and age classes although the associations between specific individuals indicate certain between- and within-class social preferences. Similarly, in Shark Bay, although Smolker et al. (1992) found groups often contained both sexes, there were consistent long-term associations between individuals of the same sex. This illustrates the difference between group composition and individual association preferences. Additionally, there is little evidence in the Shannon Estuary population for adult male groups, female-calf groups or exclusively juvenile groups.

The mean HWI of the Shannon Estuary population was 0.07 ± 0.02. Several other bottlenose dolphin populations have reported mean HWIs including the Indian River Lagoon (0.010 ± 0.006; Titcomb et al. 2015), Cedar Key (0.03 ± 0.08; Gazda et al. 2015), St Johns River, Florida (0.05 ± 0.02; Ermak 2014), Sicily, Italy (0.06 ± 0.02; Papale et al. 2017), and the Sado Estuary, Portugal (0.45 ± 0.15; Augusto et al. 2011). The lowest of these mean HWIs is reported from the Indian River Lagoon where the dolphin population is spatially segregated into six distinct communities in which members of the furthest apart communities have the lowest association indices (Titcomb et al. 2015). By contrast, the highest example given here of mean HWI is reported for a very small (n = 24) bottlenose dolphin population in the Sado Estuary with strong stable community-wide associations (Augusto et al. 2011). These examples show that there is much variation in the observed mean HWI of a dolphin population. The presence of male alliances (with high HWIs) has been linked to population density (Ermak 2014) and this could be a possible factor in the
differences found between the mean HWI values of different populations. The insular nature of small, localized or isolated populations may also lead to overall high mean HWIs regardless of within-population social structure.

Associations were not random in the Shannon Estuary dolphin population and this result was significant when applied to sex, age and area classes tested separately. The preference/avoidance of particular associates was also apparent for each year of data tested separately which further indicates the strength of this result as a representation of nonrandom population level associations.

The temporal stability of bottlenose dolphin social structure globally varies drastically, from being driven by constant companionship (Lusseau et al. 2003) to featuring casual acquaintances that last just a few days (Lusseau et al. 2006). Preferred associations in the Shannon Estuary dolphin population persisted over 1,000 d. The peaks in associations for all individuals after approximately 365 d and 730 d are most likely an effect of cyclical summer sampling periods. The best fitting model was for “two levels of casual acquaintances” associating and dissociating at two different time scales. The two time scales may simply be explained by the periods within and between field seasons. However, the two different levels of disassociation might also relate to the associating and dissociating of individuals within two separate classes; for example, age class and area class. Whitehead (2008) also similarly suggests that this type of SLAR might indicate the fission/fusion of nearly permanent social units into and out of subgroups on the short time scale and transfers between units on the longer one.

Although, as explained above, the line between the inner and outer estuary was based simply on dividing the study area into two roughly equal parts and reflecting operational issues, it turned out to be a useful reference point for tracking the movement and associations of individuals. The probability of identifying an individual in the inner estuary and then identifying it again in the inner estuary sometime later remained high over time. The same was true of outer estuary to outer estuary, although to a lesser extent. These results may represent some long-term site fidelity of individuals to certain parts of the estuary. The best fitting models for individuals moving from the inner to the outer estuary were for a “fully mixed” population. As all individuals who have been sighted in the inner estuary have also been sighted in the outer estuary, it follows that the population mixes in this area. The opposite was true of the best fitting models for individuals moving from the outer to the inner estuary which were for a “migration/interchange” population. Perhaps this can be explained by the fact that only a small number of individuals (~25% of the population) use the inner estuary, and thus would be returning to that area from the outer estuary over time. Overall rates suggest that individuals are more likely to be identified in the same study area after 200 d, but either the same or a different study area after longer periods. Perhaps this is suggestive of within-season site fidelity to either the inner or outer estuary. The use of the inner estuary by only a small percentage of the population seasonally has strong implications for management of the population as a whole, especially if other individuals are likely to go from the inner to outer but not likely to enter the inner area from the outer area during one season. For example, the degree of exposure to anthropogenic threats would be different for individuals of the inner and outer area classes.

There was good evidence for behaviorally specific preferred associations in the population with the mean HWI for socializing groups significantly higher than for foraging groups. The presence of preferred/avoided associations in sightings where individuals were engaged in either social or traveling behavior was highly significant,
compared to slightly less significance during foraging activity. The low sample size for sightings of resting behavior may have had an effect on the lack of significance for this activity state. The difference in the level of significance for associations during foraging behavior vs. social or traveling behavior is interesting as Gero et al. (2005) similarly found that bottlenose dolphins have lower level “acquaintance”-type HWIs when foraging compared to socializing. This evidence for behaviorally specific preferred associations points to the behavioral flexibility of these dolphins and their ability to adjust their social patterns to optimally fit each of various behavioral situations.

**Sex Class Associations**

For adult individuals of known sex, the highest HWIs were for female-male pairs. Contrastingly, Smolker et al. (1992) found that female-male associations were generally inconsistent and primarily within the lowest HWI class in their study. In our study, the mean HWI of male-male associations was higher than the others; however, the much larger sample size for females may have affected this due to the incorporation of some female-female associations with low HWIs into the calculation of the overall mean for that sex class. Similarly, the very small sample size for males may have obscured association patterns for that sex class. Associations between different sex classes were similar to same-sex associations, and their difference was not statistically significant. Even so, the high mean HWI for male-male associations provides a good justification for further research with an increase in sample size of known males in the population. In the reporting of the societal attributes of cetacean social structure, one of the most frequently assessed aspects is sex-specific differences in patterns of association, and contrastingly, in other bottlenose dolphin studies, these associations are often stronger between members of the same sex (i.e., within-class; e.g., in Shark Bay, Smolker et al. 1992). In Sarasota Bay, adult females interact extensively with other females and adult males typically form strong male associations or alliances (Wells et al. 1987, Owen 2003)—features that do not seem to be present in the social characteristics of the Shannon Estuary bottlenose dolphin population.

When permutation tests were used to test for preferred/avoided associations between females and males, significance for nonrandom associations was apparent in the overall analysis. Thus, female and male bottlenose dolphins in the Shannon Estuary do not associate at random. However, when each year of data was tested separately, one year (2015, with 48 individuals of known sex) did not result in significant preferred/avoided female-male associations ($P = 0.31$). This year had the lowest number of males at eight individuals and it may be that significance could not be found within the small sample size.

Stable long-term female-male associations have been recorded in bottlenose dolphin populations in Doubtful Sound, New Zealand (Lusseau et al. 2003) and in Port Stephens, Australia, where constant companionships occur between females and males (Wiszniewski et al. 2010). Associations between female and male dolphins in the Shannon Estuary continued steadily over long time scales (>1,000 d), indicating that female-male associations are more long-lasting than the general associations of individuals in the population as a whole. The best fit model was, again, for two levels of disassociation; however, for “preferred companions and casual acquaintances,” indicating that sex-specific patterns of association may persist over time between females and males at both strong and weaker levels of association. As with the general lagged association rates, this result may simply reflect the gaps between field seasons, but it is possible that the stronger associations (the “preferred companions” level)
might hold interesting information with respect to the mating system of this population.

Although only 52% of individuals in the current study were of known sex, there were no apparent divisions in the social network explained by the sex of individuals. In the Shark Bay social network, females tended to form longer chains of associates than males and almost every female was connected to all other females by a chain of consistent associates (Smolker et al. 1992). The significantly higher measures of strength (direct connectedness) and reach (indirect connectedness) found in our study substantiate the idea that female dolphins in the Shannon Estuary are also better connected than males.

More information on the life history of the Shannon Estuary bottlenose dolphin population will provide necessary data to assess the influence of female reproductive state on female-male relationships which has been shown to have a strong effect on differences in the consistency of female-male associations in other populations (Smolker et al. 1992). In Sarasota Bay, sexual segregation of males and females is common outside of the breeding season (McHugh 2010). It would be pertinent to gather more winter data on the Shannon dolphins to assess potential differences in their social structure, particularly with this in mind, as it is known that dolphins are present in the estuary during winter months (Berrow 2009). If additional winter data could be collected, analyses of year-round social associations could point to seasonality-related changes in the social structure of the population.

When combining the social analysis and group composition investigations, there was no evidence of all-male groups or the presence of male alliances that occur in other populations such as Shark Bay (Connor and Kruytzen 2015), Sarasota Bay (Owen et al. 2002), the Bahamas (Parsons et al. 2003, Rogers et al. 2004), and Port Stephens, Australia (Moller et al. 2003, Rogers et al. 2004). There was similarly no evidence for long-term male-male associations such as those in Bunbury, Australia (Smith 2012), or the Moray Firth and Cardigan Bay (Sim 2015). Additionally, it is unusual to find relatively strong female-male associations in bottlenose dolphins, such as we have in this present study, so this warrants further research. There are various reasons why significant female-male associations might exist in a population, such as increased reproductive success (through increased mating opportunities, female mate choice, mate guarding, or increased access to food resources), reduced risk of infanticide or reduced harassment by other group members (Owen et al. 2002, Haunhorst et al. 2017).

Associations by Age

Juveniles and adults had stronger within-class associations than those between age classes. The strongest association recorded in the population was between two juveniles, suggesting that the formation of strong associations early in life may be important in this population or might perhaps be related to maturing in the same age cohort, similarities in habitat use or kinship. Some other bottlenose dolphin populations typically contain exclusively juvenile groups (e.g., Shark Bay, Smolker et al. 1992; Sarasota Bay, Wells 2014). Gero et al. (2005) observed a higher frequency of behavioral associations between juveniles than among any other relative age category in Shark Bay, while Smolker et al. (1992) noted that the most consistent preferential associations tended to be between subadults. In Sarasota Bay, young animals typically socialized at higher rates than adults, and juveniles preferred to interact with other juveniles and calves, and avoided adults (relative to their availability in the Sarasota Bay community) (McHugh 2010).
Samuels (1996) found that female juvenile dolphins in Shark Bay had stronger associations with adult females (their mothers) and other juvenile females than with male juveniles, while the top-ranked associates of juvenile males were other juvenile males and not adults or juvenile females. Similarly, juveniles in Sarasota Bay showed a marked preference for associating with other juveniles, especially of their own sex (McHugh 2010)—juvenile females interacted with more adult females and calves than males, while males interacted with more juvenile males than females did. McHugh (2010) suggested that differences between the association patterns of male vs. female juvenile dolphins might relate to their future reproductive roles in relation to calf-rearing and male mating strategies. Unfortunately, it was not possible to test sex-based differences in juvenile associations in the current study due to lack of data on the sexes of juvenile animals.

There are various potentially beneficial reasons why juveniles might form preferential groups with other juveniles. While the formation of groups is often to reduce predation risk in other populations, the lack of any known predators of bottlenose dolphins in the Shannon Estuary suggests this is an unlikely cause. It is possible that juvenile dolphins might benefit from associating in groups to increase foraging efficiency, perhaps via increased efficiency of prey detection or capture (McHugh 2010).

A third potential reason for juvenile-juvenile associations is socialization, wherein social interactions may be particularly important for young bottlenose dolphins due to the complex nature and fluidity of fission-fusion social systems and the long time period over which many relationships may develop (Kaplan and Connor 2007, McHugh 2010). Indeed, Stanton and Mann (2012) found that the survival of juvenile male Indo-Pacific bottlenose dolphins (*Tursiops aduncus*) in Shark Bay, Australia, could be predicted by the social bonds they formed as calves earlier in their lives.

In Doubtful Sound, New Zealand, evidence suggests that age-related homophily in bottlenose dolphin networks can influence the formation of clusters of preferred companionship (Lusseau and Newman 2004). Although somewhat mixed, there were clusters in the social network of the population for juveniles and adults. Adults had stronger social network measures for strength and reach than juveniles, meaning they had more direct and indirect connections to the rest of the network. Lusseau (2003) found that the social network of bottlenose dolphins in Doubtful Sound was held together by key individuals creating hubs for associations between other individuals and that these individuals were often older adults. In our network diagrams, the 12 inner estuary individuals who are not part of the core inner estuary cluster were located between that core group and the rest of the individuals in the overall population network diagram and were all adults, suggesting that they might play a similar role in linking the connections of associated individuals in this population.

**Associations by Area**

The classification of individuals by sighting area revealed an interesting social division in the population. Inner individuals, that is, individuals who had been observed at least once in the inner estuary, had strong associations with inner individuals and, overall, within-area-class associations were stronger than between-area-class associations. Inner and outer estuary individuals had the lowest association indices; a similar result was found by Titcomb *et al.* (2015), where the lowest association indices were among individuals at the study site’s northern and southern boundaries.

Dolphins in different habitats experience different environmental pressures which may influence individual association patterns (Smolker *et al.* 1992). Ecological
factors, such as resource availability and distribution, might cause a population to split into two social units related to differences in habitat use or foraging specializations. If there were two key foraging areas, as suggested by the differences in habitat utilization described by Ingram and Rogan (2002), this could lead to niche partitioning in the Shannon Estuary. In some populations, bottlenose dolphins have formed communities defined as “associated individuals with long-term site fidelity to a specific area” (Wells 1986, Urian et al. 2009). Chabanne et al. (2017) suggest that a dolphin community might constitute a relevant local population comprising a total number of animals that could be affected by a proposed development and representing a population unit of some biological significance. Although all of the bottlenose dolphins in the Shannon Estuary use the outer estuary area of the study site, the differences in association between and within individuals in the inner and outer classes fits Croft et al.’s (2008) definition of a community as a group of individuals that are more associated amongst each other than with the rest of the society, and it might be appropriate to employ the term “community” to describe these two social units.

The cluster analysis of inner individuals divided them into two main clusters. The largest cluster was a core group of 21 individuals who most frequently used the inner estuary area. Twelve other inner estuary individuals in the other major cluster appear to form a connection between this core inner group and the outer estuary individuals. These 12 individuals were all adults and had some of the highest betweenness centrality measures (i.e., the number of shortest paths between other nodes/individuals that pass through that node/individual; Whitehead 2008) of the population further indicating the importance of their place in the overall network as individuals connecting other individuals. (A third “cluster” was assigned to a single individual who did not have any HWIs > 0.2 with any other individual in the inner estuary network.) Similarly, Lusseau and Newman (2004) found some individuals that they described as “playing the role of broker” in their dolphins’ social network and highlighted the importance of individuals that have preferred companionships in two communities, thus linking them together in a larger social context.

Additionally, when the age of individuals classified by area was taken into account, the social network divisions between inner and outer adults were apparent but especially clear were the divisions between inner and outer estuary juvenile dolphins. These six inner estuary juveniles (21% of all juveniles and 18% of inner estuary individuals) represented a key cohort within the inner estuary social unit.

It is important to emphasize that the clustering of these groups does not follow from the classification of the population by area: there is no reason in principle why the associations between individuals only observed in the outer estuary should be higher than those between these individuals and individuals who are sometimes observed in the inner estuary. The data presented here are necessary to substantiate the connection between area class and association. Similarly, Lusseau et al. (2006) found that their identification of two separate social units which mainly used two different areas was the result of genuine social affiliation and not an artefact of spatial distribution. Cantor’s (2012) work on spatiotemporal dynamics in a dolphin society found that spatial distribution did not influence the probability of individuals associating with one another.

“Spatiosocial” divisions in bottlenose dolphin networks can be related to many factors, including the geography of the study site (Wells 2014, Titcomb et al. 2015), individual ranging patterns (Lusseau et al. 2006), habitat preferences (Wiszniewski et al. 2009) or differences in cultural behavior (Mann et al. 2012). Overall,
this apparent division of the population into two social units which correspond to area use within the study site is an important finding for management of the population as a whole.

Conclusions

The purpose of this study was to describe and analyze the social structure of wild bottlenose dolphins in the Shannon Estuary, Ireland, with the inclusion of additional data on sex, age, and area class for individual dolphins. Social analysis of the whole population revealed groups of mixed composition and variation in association measures across individuals. There is strong evidence that associations between bottlenose dolphins in the Shannon Estuary are not random and that they persist over time. There is also evidence that association measures are related to behavioral state.

Through the classification of individuals by sex, age, and area, important class-determined associations that were somewhat apparent between sex classes were found, but especially strong for within-age and within-area class relationships. Although the strength of female-male associations could not be absolutely determined, the results suggest that female-male associations persist without decline over periods of more than three years. Social network analyses illustrated the preferences of juveniles to associate with juveniles and adults with adults.

Movements between the inner and outer estuary areas of the study site were quite stable over time but use of the inner estuary was limited to a quarter of the population’s individuals exclusively. This inner estuary social unit was further divided into a core group of individuals and another group with associations linking core group members and outer estuary individuals. This division in the social structure with respect to area use has important implications for management. This dolphin population has traditionally been managed as one unit, however this study, mirroring others such as in the Moray Firth, Scotland (Wilson et al. 2004, Lusseau et al. 2006), shows that it may be appropriate to consider the dynamics of the population’s social structure in terms of area use when defining management guidelines, especially when the inner estuary is used by such a small (and therefore potentially vulnerable) number of individuals.

This study increases our knowledge of bottlenose dolphin social structure and could be used for comparative studies, to explore similarities and differences in bottlenose dolphin population dynamics. It is unique in its coverage of a moderately sized bottlenose dolphin population in Europe with considerable data on individual sex and age. The results presented have demonstrated the importance of investigating local social behavior in a species known to show a high degree of behavioral plasticity, and provide additional material for cetacean scientists to better understand bottlenose dolphin societies in all their variety. Furthermore, an understanding of the social structure of this population, especially because of its presence within a Special Area of Conservation designated for the species (NPWS 2012), is critical. The findings of this research will contribute to the management and conservation of this important dolphin population in Irish waters.

Acknowledgments

We would like to thank the dolphin-watching tour boat operators, Geoff and Susanne Magee and Gerald and Geraldine Griffin, for their ongoing support of our work. Many thanks
to Mr. Louis Keating and the staff at Kilrush Marina for sponsoring a berth for our research vessel and facilitating dolphin research surveys. Many thanks to Jeff Adams for help with FinBase. Many thanks to Prof. Emer Rogan, University College Cork, for sharing biopsy and ID data. We are very grateful to all of the researchers involved—John Baker, Joanna Barker, Chantelle Barry, Elisa Keeling Hemphill, Mark Hosford, Stephanie Levesque, Michael Marrinan, Giada Maugeri, Jamie Nicol, Victoria Odynsky, Meadhbh Quinn, Katharina Reusch, Gary Robinson, Stefanie Rowland, Clodagh Russell, Andrew Shine, Rebecca Treacy, and Joel Vikberg Wernström. Biopsy samples were collected by University College Cork during work funded by Science Foundation Ireland (Grant No. 05/RFP/EEB018 and 06/RFP/EEB042). All biopsy sampling was conducted under permits from the National Parks and Wildlife Service of the Department of Environment, Heritage and Local Government in Ireland. Dedicated behavioral research was carried out under licenses (Nos. 109/2014, 020/2015) issued by the National Parks and Wildlife Service of the Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs. The authors wish to declare that there are no conflicts of interest.

**Literature Cited**


Received: 31 May 2017
Accepted: 11 October 2017

Supporting Information

The following supporting information is available for this article online at http://onlinelibrary.wiley.com/doi/10.1111/mms.12462/supplinfo.

Table S1. The number of sightings in the inner estuary and outer estuary survey areas for each individual dolphin (3-digit ID code) and the area class assigned to each individual for analysis.

Figure S1. Map of the Shannon Estuary study site in Ireland. The line between Loop Head and Kerry Head represents the western boundary of the Special Area of Conservation (SAC) while the line at Aughinish represents the boundary of the area within the SAC surveyed during this study. Sightings of individual dolphin IDs are classified by area as “Outer Estuary” (triangles), “Inner Estuary ($\geq 4$ sightings)” (circles), and “Inner Estuary ($\leq 3$ sightings)” (squares), and correspond to area classifications for each individual in Table S1.